
Scientific Python
A brief introduction

Trygve Eftestøl

August 12, 2019

ii

Contents

1 Introduction 1

1.1 Motivation for the course through an example 1

1.2 Installing Python . 3

2 The Python user interface 3

2.1 The Interpreter . 5

2.2 The editor . 6

2.3 Help . 7

2.4 Exercises . 7

3 Basic functions 8

3.1 Creating matrices . 8

3.2 Matrix operations . 10

3.3 Matrix functions . 11

3.4 Indexing matrices . 12

3.5 Logical operators . 14

3.6 Exercises . 15

4 Visualisation 16

4.1 Simple 2D plotting . 16

4.2 3D plotting . 18

4.3 Exercises . 20

5 Programming 21

5.1 Function files . 21

5.2 Control structures . 22

iii

5.2.1 Conditional testing with if 22

5.2.2 Iterative structures using while or for 23

5.3 Exercises . 24

6 Analysis 24

6.1 The problem - computing the heart rate 25

6.2 Solving the problem . 25

6.3 Exercises . 29

iv

These notes provides an introduction to using Python as a computational and
programmingtool. It focus on typical areas of usage: mathematical compu-
tations, visualisation, data analysis and programming. Reading these notes,
you will get to know Python’s user interface, try out vector amd matrix ma-
nipulation, use some of the central computational functions, get impressed by
Python’s capabilities for and reach a level of expertise where you will be able
to make your own small Python programs.

1 Introduction

Python is an interactive matrix based system for numeric computations and
visualisation. The Python name refers to the Monty Python’s Flying Circus
which was a legendary British sketch comedy series airing in the period 1969
to 1974.

Python provides you with the possibility for computations, visualisation and
analysis far exceeding the scope of these notes. Therefore you should get
familiar with the use of the help and documentation system integrated in
Python. By doing this you will be able to find the proper functionality when
you need it.

1.1 Motivation for the course through an example

The course will soon dive into the world of number sequences: how to create
sequences and tables of numbers and do mathematical and logic operations
on the numbers as well as picking out parts of these. Therefore a real world
problem will be decribed. Upon reaching the final section of the introduction,
teh reader should be capable of solving this problem.

Determining heart rate from pulse beat measurements

For motivation, a realistic problem will be handled at the end of the course
where the aim is to determine the heart rate. This is a technology resembling
what can be found in modern wearable sports watches. During a cardiac
cycle, the pressure pulse reaches the skin causing a change in volume. This
change can be detected by illuminating the skin with light from a light-emitting
diode (LED) and measuring the amount of light reflected or transmitted to a
photodiode.

Figure 1 shows a text file where a photopletysmograpchic recording has been

1

stored after digitizing the measurements. The view is split in two, showing the
lines at the start and end of the file. Let us consider an approach to determine

Figure 1: A textfile with photopletysmographic measurements.

the heart rate. For each pulsewave, the measurement values should go through
a cycle where the values increase from some minimum value to a maximum
and returning to a minimum value. If we can determine the timepoints for the
maximum value, we can use this to represent the time for the corresponding
heartbeats. If we find all the maximum points representing one heartbeat each
throughout the recording and keep record of the corresponding time points we
can calculate the cardiac cycle time intervals. We can use these to calculate
the average time interval and thus the average heart rate.

Looking at the four first lines, the header, we see that the sampling frequency
is 40 samples per second. This information is essential for us to be able to
determine the time points in seconds. To find the maxima, we need to find
the lines where the numbers starts to decreas after increasing. There is one
example on line number 13 where the maximum value 205 is reached increasing
from 190 before decreasing to 200. A similar maxima is found on line 1050.
Now consider the burdensome task of finding all the maxima values among the
1051 values. As the recording corresponds to a total duration of 26.275 seconds
one should expect to have to find approximately 30-40 such points. Unfortu-
nately, the measurements contains many maxima that are not associated to

2

heartbeats. These false detections are due to measurement noise. They will
typically have lower values that the heartbeat maxima. One could consider
censoring these detections, but the task of handling this manually now seems
to have grown unmanageable.

Section 6 will show how the numbers representing the measurements can be
read into the Python workspace and further how the signal itself can be vi-
sualised, and the signal peaks detected. We will also introduce some signal
processing concepts that will provide tools to handle the false detections. Be-
fore we can do this we need to introduce the basics on how to handle number
arrays, visualisation and some basic programming concepts. This will be cov-
ered in sections 3, 4, and 5. But first, we will introduce the Python working
environment in section 2.

1.2 Installing Python

The introduction requires that Python is installed on your computer. See
https://www.python.org/ for instructions on how to install Python on your
computer. If you are using Windows pipwin is recommended for installation
of precompiled packages (https://pypi.python.org/pypi/pipwin/).

It is recommended to install scentific python by giving the command pip install
scipy which can be replaced by pipwin install scipy on Windows.

2 The Python user interface

The procedure for starting Python varies according to your operating system.
For Windows and MAC users the Python application will usually be available
from the menu system, represented as an icon. Start Python by double clicking
this icon. UNIX and LINUX users can start Python double clicking an icon
or from a terminal window.

When working with Python, there are two important environments: The editor
where programs can be written and the interpreter where commands can be
given in interactive mode. Figure 2 shows an example where the text editor
Emacs is used as a Python Integrated Development Environment (IDE). In
the top window there is an editor for for writing code in a .py file. In the top
window, you se an example of a Python interpreter, in this case Ipython.

3

Figure 2: Emacs Python IDE: Editor (top), Interpreter (bottom).

4

2.1 The Interpreter

In the interpreter you can declare variables, perform simple operations and
call functions. In figure 3 you see an interpreter window where the standard
CPython which is an alternative to the Ipython interpreter which is used in
notebbok solutions which offers solutions for rich media.

Figure 3: Python CPython interpreter.

Commands are given at the prompt, If you want to execute a command called
function, this is usually done from a terminal window by giving command
(executes at ENTER):
C:\python function.py

A simple example;

>>> 10

where Python will respond

10

Another important concept is the usage of variables. A variable can be created
directly in the command window e.g. when we want to create the variable a

5

and store the value 10 in it. This is done quite simply by giving the command
(executes at ENTER)

>>> a=10

Variables are often used to declare input and output parameters at function
call. As an example,

>>> import numpy as np

>>> b=np.sin(a)

means that the command sin is called with the variable a as input parameter
and the result from the operations executed is sent back through an output
parameter and stored in the variable b. After the execution of these commands,
the variables a og b can be displayed by calling them as shown below.

>>> a

10

>>> b

-0.54402111088936977

Note that the the sine function is part of the NumPy package. That is the
reason for the import numpy as np command. The functions foo in this
package can later be called by giving the command np.foo()

2.2 The editor

In the editor you can make your own Python-functions by writing your pro-
grams in py-files. The editor window is shown in the upper window in figure
2. The editor can be used for debugging of the programs you are writing. The
two commands described above can be put into an py-file:

import numpy as np

a=10

b=np.sin(a)

If the py-file is named instructions.py, the two commands can be run by giving
the command

C:\python instructions.py

6

2.3 Help

Figure 4 shows the Documentation page for Python 3.x which can be found at
python.org. Here are links to tutorials and reference material. There is also a
search page which can be used to search for and display documentation and
demonstrations for Python functionality. Python has a large user community,

Figure 4: Python documentation.

so searching the web is also an option.

2.4 Exercises

a) Install Python.

b) Start a Python Interpreter.

c) Open an editor.

d) Find the Tutorial on the documentation page.

e) Use the search page find information on how the sine function is used.

7

3 Basic functions

Now it is time to get started with the main issue about Python - computations.
It will be useful to keep in mind that Python, as the name indicates, is matrix
based. A matrix is a set of elements organised in a rectangular array. These
matrices can represent various types of data:

• Scalars, vectors and matrices which all are diferent types of matrices, but
containing one single element, a single row of elements or several rows of
elements, respectively.

• Tables which are organised as a list of elements. Python will not distin-
guish between a matrix and a table, but gives the user the opportunity
to handle data as one or the other.

The concept of elements might seem a bit vague, but Python makes distinction
between elements of different types:

• Numerical numbers which can take part in computations,

• Characters assembled in a vector denoted a string,

• Symbols,

• One might even define a matrix as an element.

The first three types of elements can be handled using matrices, while for
the last one where the element definition may vary special cell structures are
applicable. We will return to the various data stuctures of Python.

As the concepts of vectors and matrices might be vague to some, we give some
hands-on examples:

• A sound file will be a vector. When the sound file is imported into
Python, the sound samples will be represented as elements in a vector.

• A grey tone image will be a matrix. When the image file is imported into
Python, the picture elements (pixels) will be represented as elements in
a matrix.

3.1 Creating matrices

Matrices can be assigned in the following ways:

8

• The elements are explicitly put into a list,

• Generated using built-in functions,

• Created in an py-files called from the command window,

• Read from external data files or applications.

Here are some examples on how we can create matrices directly in the command
window.

First we need to import MumPy which is a package with functions for scientific
computtations and contains functions for handling vectors and matrices.

>>> import numpy as np

Note the as np part of the import statement. The functions in the package
can thus be called by prepending np. as in np.foo.

Assigning scalars:

>>> a=5

>>> a=

5

Assigning a row vector:

>>> y=np.array([0, 5, 10, 15, 20])

>>> y

array([0, 5, 10, 15, 20])

The elements can be separated by a comma instead of a space. The result will
be the same.

A column vector can be assigned correspondingly

>>> x=np.array([0, 5, 10, 15, 20])

>>> x=x.reshape(x.size,1)

>>> x

array([[0],

[5],

[10],

[15],

[20]])

9

A matrix can be assigned as follows

>>> A=np.array([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14],[15,16,17,18,19]])

>>> A

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19]])

We can assign the same matrix from an M-file, Amatrix.py, where the following
instructions are given

import numpy as np

A=np.array([[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14],[15,16,17,18,19]])

A is then assigned and shown by

>>> run Amatrix

>>> A

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19]])

3.2 Matrix operations

Some of the most fundamental mathematical matrix operators are addition,
subtraction, multiplication og transponation. Another useful “house hold”-
operator is the colon operator.

+ addition
- subtraction
* multiplication
/ division

>>> y+y

array([0, 10, 20, 30, 40])

10

x+x will give an equivalent results, but in column vector format.

for vectors, the operators will work element wise so that the resulting vector has
the same dimension as the operand vectors, and the value in a specific position
is the result of the operations performed on the elements in the corresponding
positions in the operand matrices.

Operations between a scalar and a vector/matrix will always be element wise.

It is important to note the difference between matrix operations and element
operations.

3.3 Matrix functions

Examples of matrix operations can be element-wise or operations well known
from linear algebra.

Some basic mathematical matrix functions allow us to sum, diagonalise, find
determinants etc.

power power
transpose transponation
sum sums the elements in a vector/matrix matrix
dot vector inner product, vector/matrix multiplication
diag diagonalises a matrix
det computes the determinant of a matrix

Note that all funcctions are either called np.sum(A) or A.sum().

>>> b=np.dot(A,x)

>>> b

array([[150],

[400],

[650],

[900]])

There are also some functions useful for “building” matrices.

eye generates an identity matrix
ones generates a matrix of ones
rand generates a matrix of random numbers

11

size determines the dimension of a matrix
arange create an increasing vector
: slicing

Note that the arguments to these vary eye(nr), ones((nr,nc)), matlib.rand(nr,nc),
sise(foo,d), where nr and nc denotes the number of rows and columns. d de-
notes the dimension for which nr (d=0) or nc (d=1) can be determined.

As an example, a 2X2-matrix can be generated by

>>> I=np.eye(2)

>>> I

array([[1., 0.],

[0., 1.]])

The arange operator is used to generate number sequences.

>>> n=np.arange(1,6)

>>>n =

array([1, 2, 3, 4, 5])

As we can see, the operator fills in all the integers between 1 and 5. The
default increment value is 1, but we can decide its size by giving its size. For
example we can set the increment value in the previous example to 2.

>>> n=np.arange(1,6)

>>>n =

array([1, 2, 3, 4, 5])

As an example, some of the vectors and matrices we generated previously can
be described more efficiently

>>> y=np.arange(0,21,5)

>>>y =

array([0, 5, 10, 15, 20])

3.4 Indexing matrices

By indexing one might work with excerpts of matrices. The colon operator
is important in this context. The element in row i, column j in a matrix,

12

A, can be retrieved by giving the command A[i-1,j-1]. The first element
indicates the row while the second element gives the column. Note that the
first elements in rows and columns are indexed with 0. As an example

>>> A[1,2]

>>> A

7

retrives the element in row number 2, column number 3 in the matrix A.

We do not need to limit our attention to single elements, but can use the colon
operator to indicate which part of the matrix we want to access. First we
determine the number of rows and columns

>>> nr=np.size(A,0)

>>> nc=np.size(A,1)

>>> A[1,0:nc]

array([5, 6, 7, 8, 9])

retrives the second row from A. This command can be given an even more
convenient short form

>>> A[1,:]

array([5, 6, 7, 8, 9])

Also, reference to last element to be indexed can be referenced by number of
elements to last element.

>>> A[1,:-1]

array([5, 6, 7, 8])

Finally, it is useful to be able to expand a matrix by connecting it to another
matrix.

>>> np.hstack((a,y))

array([5, 0, 5, 10, 15, 20])

13

3.5 Logical operators

Python has several logical operators which are applied on matrices element
wise

< less than
> larger than
<= less than or equal to
>= less than or equal to
== equal
!= not equal

Note that == is used as a logical operator while = is used for assignment.

In addidion we have the well known logical operators

and logical AND
or logical OR
not logical NOT

We can determine which elements in y are larger than or equal to 10 by giving
the command

>>> y>=10

array([False, False, True, True, True], dtype=bool)

which gives a boolean result indicating for each element position the test being
FALSE or TRUE respectively.

Furthermore, we can use the function where to identify the elements in the
vector fulfilling the test:

>>> idx=np.where(y>=10)

>>> idx

(array([2, 3, 4], dtype=int64),)

idx indexes the positions of the elements fulfilling the test.

14

3.6 Exercises

Some of the operations that you will performwill return an error message.
Why? a) Generate the variables a,y,x and A corresponding to how it was
shown earlier in this section. Use the colon operator to generate the vektor x
and the matrix A efficiently.1

b) Execute the operations a+a, a+y, a*y, a*A, x*A, x*x, A*A.

c) Execute the operation det(A), diag(A), diag(diag(A)).

d) Establish a 3X3 identity matrix.

e) Generate a vector corresponding to x = (1 2 . . . 100).

f) Fetch every second element from column number 2 in A.

g) Fetch 6 elements from the middle of A.

h) Expand A by appending y as an extra row.

i) Write the elements of y larger than or equal to 15 to the command window.

j) Crudely put, genes are the “cook book” of an organism. A DNA-string
contains genes, areas that regulate the expression of genes, and areas that do
not have any function that we know of.

DNA is coded with four exchangeable “building blocks”, called bases, abbre-
viated to A, T, C eller G, corresponding to their chemical names: Adenine,
Tymine, Guanine og Cytosine. The variable nucseq2 represents a DNA-string.
Upon analysis of DNA-strings it is convenient to remove the areas without
function. To do this we can take advantage of the periodicity of 3 of the areas
of interest. These areas can thus be identified using frequency analysis. To
do this, the sequence has to be reformated to a analysable sequence. One way
to do this is to make a binary sequence for each of the bases. For instance,
the binary sequence for ’a’ for the DNA string ’atcgacgta’ will be ’100010001’
while the binary sequence for ’c’ will be ’001001000’. Make a binary sequence
for each of the four bases for the DNA string in nucseq.

1Hint: Use transponation for efficient generation of x.
2nucseq.mat is a MATLAB .mat file which can be downloaded from

www.ux.uis.no/˜trygve-e. You need to find out how a .mat file can be read into
Python.

15

4 Visualisation

Python has an extensive library of routines for visualisation of vectors and
matrices. We will concentrate on a small selection of the most important
functions for generating 2D and 3D graphics. In addidion, there are good
opportunity for putting text to and printing graphics.

4.1 Simple 2D plotting

In this context we want to plot function values to their corresponding argument
values. Consider the function y = f(x). We would like to plot values of y
against corresponding values of x.

To do this one might generate a vector, x with argument values, or points of
computation, for the function. The next step is to perform the computation
corresponding to y = f(x) for each single point of computation in x.

As a simple introductory example of plotting we consider the function y = f(x)
der f(x) = x2. We want to plot the function in the interval x ∈ [−2, 2].

The first thing we need to do is to generate points of computation in the
interval x ∈ [−2, 2].

>>> x=np.arange(-2,2,0.01)

Notice how we employ an increment step of 0.01 so that we get 400 points
of computation in total from -1.99 to 1.99. Furthermore, we compute the
functional values for each point of computation:

>>> y=np.square(x)

Here we make use of the power operator in an element wise manner so that
the operation is executed on each single element in x.

Finally we generate the plot:

>>> plt.plot(x,y)

>>> plt.show()

Python responds by generating a figure window as shown in figure 5.

16

Figure 5: Figure window with plot of y = x2

It is also possible to plot several functions simultaneously, define line types
and colour, put text on the axes, make titles and print the graphics, just to
mention some of the most useful functions.

>>> y2=2*abs(np.sin(x))

>>> plt.plot(x,y,’b’,x,y2,’r:’)

>>> plt.xlabel(’x’)

>>> plt.ylabel(’y’)

>>> plt.title(’Demonstration of simple 2D plotting’);

>>> plt.savefig(’plot2D.png’)

>>> plt.show()

Note that ’ can not be copied to the command window. The results can be seen
in figure 6. You should be able to find out the effect of the various commands
by studying figure 6 which actually is a png-file, plot2D.png, generated by the
savefig command.

17

Figure 6: Figure window with plot of y = x2

4.2 3D plotting

In the previous section we demonstrated how to plot functional values of y
against values of x. For 3D plots we want to plot values of z as a function of
x og y, z = f(x, y).

3D line plot We can plot a line through (x, y, z) points defined parametri-
cally using the following instructions:

>>> import matplotlib as mpl

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure()

>>> ax = fig.gca(projection=’3d’)

>>> t=np.arange(0,20*np.pi,0.01)

>>> x=np.cos(t)

>>> y=np.sin(t)

>>> z=np.power(t,3)

>>> ax.plot(x, y, z)

>>> plt.xticks(np.arange(-1,1.1,0.5))

>>> plt.yticks(np.arange(-1,1.1,0.5))

>>> plt.xlabel(’x’)

>>> title(’Example of a 3D plot’);

18

The result can be seen in figure 7.

Figure 7: Figure window with 3D line plot

3D surface plot We can plot surface functions as for example the sur-
face given as z = e−x2−y2 . We want to plot this function over the square
[−2, 2]× [−2, 2]. To do this we have to generate a grid of point of compu-
tations (computational grid) (x, y) within this square. This is done by first
defining the computational grid along each axis and then to span the grid by
using the function meshgrid.

>>> x=np.arange(-2,2,.2)

>>> y=np.arange(-2,2,.2)

>>> X, Y = np.meshgrid(x,y)

The computation of the function values and plotting of the surface using the
function mesh renders the plot shown in figure 8.

>>> Z=np.exp(-np.square(X)-np.square(Y))

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111, projection=’3d’)

>>> ax.plot_wireframe(X,Y,Z)

>>> plt.xlabel(’x’)

19

>>> plt.ylabel(’y’)

>>> plt.title(’Example of a 3D mesh plot’)

Figure 8: Figure window with 3D mesh plot

4.3 Exercises

a) Plot the signal x = Acos(ω0t + θ0), in the interval t ∈ [0, 3π] for ω0 = 2/3,
A = 2 and θ0 = 0. 3

b) Display the function as a surface instead of mesh by using the function
plot surface.

c) Generate a 3D mesh plot of the two dimensional sinc function z = sin(r)/r,
where r = x2 + y2 over the square [−8, 8]× [−8, 8]. 4

3Remember that w0 = 2πf0 and that the period is T = 1/f0, so this corresponds to
plotting one period of x.

4Remember that there will be a problem if you try to compute the function for x = y = 0.
This can be handled by adding a value eps close to 0 to all points of computation.

20

5 Programming

As mentioned previously, you can make your own Python functions by writing
programs in so called M files. The example in section 2.2 demonstrates how a
set of indtructions can be run by calling an M file containing these instructions.
This type of M files only containing a set of instructions are called script files.

In this section on programming, we shall focus on another type of M files that
carries the term function files. This enables you to create your own Python
functions with input and output parameters such as the sine function used as
example of one of Python’s built in functions in section 2.2.

5.1 Function files

As a simple example we will make a function for computing the normal prob-
ability density function,

p(x) =
1√
2πσ
· e

−(x−µ)2

2σ2 . (1)

Here we will use the variable x and the function parameters µ and σ as input
parameters. p will be the output parameter. We will call the function pdens.py.
The contents of the file might look like følger:

import numpy as np

def pdens(x, m, s):

PDENS Computes the probaaility density values

P=PDENS(X,M,S) computes the density value P for

X for a gaussian density function with

mean value M og standard deviation S.

p = 1/(np.sqrt(2*np.pi)*s)* \

np.exp(-1/2*np.square((x-m))/(2*np.square(s)))

return p

Notice the help text where each comment line starts with a # so that Python
won’t interpret the line as an instruction to execute. Also, the function dec-
laration by def ending with a :. The indentationn of code block within the
finction body is also required. Note the input variables x,m,s and the output
variable given by the return keyword.

To execute the function the following commands are given

21

>>> from pdens import pdens

>>> p=pdens(1,2,3)

>>> p

0.12933768267647971

Note that more than one function can be defined within a single .py file, so
the filename does not need to be the same as the function name. Note the
import numpy as np at the top of the file. Also note the way the function
itself is imported from the file by from pdens import pdens.

5.2 Control structures

Python employs many of the control structures well known from other pro-
gramming languages. We will look at the most important ones.

5.2.1 Conditional testing with if

One of the two important control strucures is if. In describing an algorithm,
one often needs to choose between two different activities depending upon some
test condition being true or false. In Python this can be expressed as

if condition:

activity1

else:

activity2

For example if one needs to make a procedure, absolute, that computes the
absolute value y = |x| of a number, x, so that y = x when x is positive and
y = −x otherwise.

def absolute(x)

ABSOLUTE Computes the absolute value

Y=ABSOLUTE(X) computes the absolute value, Y, of X

if x < 0:

y=-x

else:

y=x

return y

22

Note the key words if and else. These key words are reserved for this purpose
and may not be used for other purposes.

5.2.2 Iterative structures using while or for

while The second of the two important control structures is while. This
makes it possible to repeat the execution of an activity as long as som condition
is fullfilled. Combined with conditional testing this gives the opportunity to
describe algorithms in a powerful way. In Python this may be expressed as

while condition:

activity(s)

As long as the condition is true, execute the activity. Return and execute the
activity again. When the condition is false, the iterations terminate and the
execution continues at the first instructions after the while structure.

As an example one might want to make a function, divideby2, which divides
an integer n with 2 as many times as possible. The commands fix and rem

are used to compute the integer quotient and the remainder respectively.

def divideby2(n)

DIVIDEBY2 Divide by 2 as long as the remainder is zero

Q=DIVIDEBY2(N) computes the quotient, Q,

the maximum number of divisions by 2

q=n

while np.remainder(q,2) == 0:

q=np.fix(q/2)

return q

As we can see q is a local variable that changes and is a part of the test
condidion. This is an essential part of the control part of the while structure
which consists of the components

• Initialisation: q is set equal to the integer to be divided by 2.

• Test : it is tested if q can be divided by 2.

• Modification: q is changed to the next quotient which will be attempted
to be divided by 2. This modification ensures that the terminal condidion
will be reached.

23

for It is worth noting that the while loop repeats an undetermined number
of times. If you want to repeat a number of instructions a fixed, predetermined
number of times, it is convenient to use for loops.

As an example we want to modify the function pdens so that you can compute
the density values for more than one point of computation at a time. A possible
way to do this:

def p=pdens2(x,m,s)

PDENS Computes the probaaility density values

P=PDENS(X,M,S) computes the density value P for

the values in a vector X for a gaussian density function

with mean value M og standard deviation S.

N = np.shape(x)[0]

p = np.zeros(np.shape(x))

for n in np.arange(0, N - 1):

p[n] = 1 / (np.sqrt(2 * np.pi) * s) * \

np.exp(-1 / 2 * np.square((x[n] - m)) / (2 * np.square(s)))

return p

As you can see very few modifications are needed to make the function handle
vectors. The number of iterations are determined usint the length function,
and the loop counter n is used for vector indexing of both x og p.

5.3 Exercises

a) Make a function to determine whether a number is odd or even. Return 1
if the number is odd, otherwise return 0.

b) Make a function that generates a vector of random numbers (integers in
the range [0, 9] which can be generated by use of random.randint). Further
to this, the function shall distribute the numbers to two vectors, one with the
odd numbers and the other with the even mumbers.

6 Analysis

w To finish this Python introduction, we present an example where Python is
used for analysis of realistic data. This example will illustrate reading data

24

from a file, analysis of the signals decoded from the data. This analysis will
involve spectral analysis, a central concept in signal analysis, and furthermore
filtering of the signal. This filtering will make it possible for you to solve the
problem. In the example the step by step procedure for reaching the will be
illustrated. In the final part of the exercise you will have to do the calculations
leading to the solution of the problem.

6.1 The problem - computing the heart rate

In this exercise you will be working with a photoplethysmographic dataset
measured on one of the employees at the institute’s laboratory of medical
engineering. The data file is named photopl.txt. You will also need the function
findpeaks.m5. This signal carries information on the pulse beats measured from
the employee.

Using the signal, you shall compute the number of beats per minute (the heart
rate) and how much the time between the individual beats vary (the heart rate
variability). In brief, the method for doing this will be based on finding the
time instants for each individual beat.

6.2 Solving the problem

When working with this kind of problem, it will obviously be useful to study the
measured signal to consider a possible method for solving the given problem.
The first step will be to read the signal from the data file.

Reading the input If the data file is opened in an editor e.g. Notepad you
will see that the data are ASCII-coded and structured into one channel. The
four first lines in the file give information on what kind of measurements the file
contains in addition to date of recording, sample frequency and the number of
recorded samples. To be able to analyse and perform arithmetic operations on
the samples, the data has to be read into Python where the meaured sampled
are organised in a vector. This can be done by giving the following commands:

>>> x=np.genfromtxt(’photopl.txt’,dtype=None,delimiter=None,skip_header=4)

>>> x=x/np.std(x)

The function csvread is used to decode the ASCII coded data from line 5 and
further on, while dividing by the standard deviation is done to scale the signal

5The files photopl.txt and findpeaks.m can be downloaded from www.ux.uis.no/˜trygve-e

25

to unity variance which will be convenient in the further analysis.

Plotting the signal When we want to plot the signal, it will also be conve-
nient to generate a time vector for the signal. Considering the four first lines
in the file, we know that the sampling frequency is 40 Hz. The commands for
plotting the necessary information can be like

>>> fs = 40.0

>>> N = np.size(x)

>>> t = np.arange(0, N) / fs

>>> t = t.reshape(t.size, 1)

The detections can be done by using the function findpeaks. The folowing com-
mans illustrate the usage of this function and the visualisation of the detected
peaks.

>>> from analyse import findpeaks

>>> ind, peaks = findpeaks(x)

The plotting is done as shown below.

>>> fig1 = plt.figure(1)

>>> ax1 = plt.axes()

>>> ax1.plot(t, x, ’b’, t[ind, 0], x[ind, 0], ’go’)

>>> plt.xlabel(’t [sek]’;

>>> plt.ylabel(’x(t)’)

>>> plt.grid(’on’)

>>> fig1.set_size_inches(8, 3)

The blue curve shown in 9 show the recorded signal, and the individual pulse
beats are clearly displayed as a periodic signal with approximately one beat
per minute. One immediate idea is that the pulse rate can be determined by
first detecting the beats representing the individual pulse beats.

The variable n contains the sample number of the local maxima detected in
x using the findpeaks function. The command hold on makes it possible to
plot the detected tops superimposed on the pulse curve plotted previously.
The plotting of the peaks is doe by indexing the t and x and specifying their
representation as green circles (’go’). The command axis is used to delimit the
plot along the axes.

26

Figure 9: Pulse signal (blue curve) and detected peaks (green circles)

The detected tops are thus shown as green circles superimposed on the pulse
curve as shown in figure 9. We can see that the pulse beats are detected
according to our specification, but that the result includes a large number of
false detections as well.

Spectral analysis of the signal When we study the signal, we can see
that the pulse beats have a periodic nature. Using filtering techinques will
possibly enable us to emphasise the periodic component corresponding to the
pulse beats we want to detect. At the same time the filter should suppress the
components corresponding to the false detections.

To design such a filter we need to know the exact frequency the pulse beats
correspond to.

The spectral analysis is done by estimating the spectrum of the signal and
then visualising it. This can be done by the following commands:

>>> f,Pxx = signal.welch(x.reshape(1,x.size),fs,nperseg=256,

>>> nfft=1024,detrend=False,scaling=’density’)

>>> Pxx = Pxx.reshape(Pxx.size, 1)

>>> f = f.reshape(f.size, 1)

>>> fig2 = plt.figure(2)

>>> ax21 = fig2.add_subplot(211)

>>> ax21.plot(f, 10 * np.log10(Pxx), ’b’)

>>> plt.xlabel(’f [Hz]’)

>>> plt.ylabel(’Magnitude [dB]’)

>>> plt.grid(’on’)

>>> plt.axis([0, 20, -40, 20])

The spectral estimate is computed by the function welch which is one of a
number of possible methods. The spectrum is shown in the upper part of
figure 10. The command add subplot is used to make a split figure window.

27

Figure 10: Spectrum (top) and designed band pass filter (bottom)

As can be seen from studying the spectrum, the signal has a dominant fre-
quency component at 1 Hz. This corresponds to the periodic component of
the pulse beats which we previously roughly estimated to be around 1 beat
per second.

Filter design We want to design a band pass filter emphasising the fre-
quency comonent at 1 Hz while suppressing other components.

>>> dt = 0.55

>>> pb = np.array([0,0.58-dt,0.58,1.27,1.27+dt,20])/(40)

>>> b = signal.remez(150, pb, [0, 1, 0], type=’bandpass’)

>>> w, h = signal.freqz(b)

>>> ax22 = fig2.add_subplot(212)

>>> ax22.plot(w / (2 * np.pi) * 40, 20 * np.log10(np.abs(h)), ’b’)

>>> plt.xlabel(’f [Hz]’)

>>> plt.ylabel(’Magnitude [dB]’)

>>> plt.grid(’on’)

>>> plt.axis([0, 20, -40, 20])

The command fir1 designs the filter where the first parameter states the order
of the filter (the higher order, the steeper transition area). The other parameter
indicates the lower and upper cutoff frequency for the pass band 0.58 og 1.27

28

Hz respectively (division by 20 corresponds to normalising to half the sampling
frequency). In the frequency domain, the result of filtering will correspond to
multiplication of the spectrum at the top with th efrequency response of the
filter at the bottom of the figure.

Now we have come to the part where you perform the last steps to reach
the solution of the problem. You will have to filter the signal and make a
new detection attempt.a er vi kommet dithen at signalet kan filtreres og ny
deteksjon kan utføres. But you will be on your own now (See the exercises
given below).

6.3 Exercises

a) Use the function signal.filtfilt to filter the pulse signal x.6

b) Plot the spectrum of the filtered signal (red curve) in the same plot as the
original signal (blue curve). What has been the effect of the filter?

c) Do the peak detection once more, but this time on the filtered signal.

d) Visualise the filtered signal and the recently detected peaks together in the
same plot.

e) Determine the heart rate7.

f) Determine the heart rate variability8.

6In the function documentation the syntax is given as y=signal.filtfilt(b,a,x,...). Set a=1;
7It will be useful to apply the function mean to compute the average value.
8Express the variability using the standard deviation which can be computed by using

the function std from Numpy.

29

